Prometheus 四种指标类型
Prometheus 的客户端库中提供了四种核心的指标类型:Counter(计数器)、Guage(仪表盘)、Histogram(直方图)、Summary(摘要)。但这些类型只是在客户端库中存在,实际在 Prometheus 上并不对指标类型进行区分,而是简单地把这些指标类型统一视为无类型的时间序列。
Counter(计数器)
Counter 类型代表一种样本数据单调递增的指标,即只增不减,除非监控系统发生了重置。例如,你可以使用 counter 类型的指标来表示服务的请求数、已完成的任务数、错误发生的次数等。counter 主要有两个方法:
1 | // 将 counter 值加1 |
Counter 类型数据可以让用户方便的了解事件发生的速率的变化,在 PromQL 内置的相关操作函数可以提供相应的分析,比如以 HTTP 应用请求量来进行说明:
1 | // 通过 rate() 函数获取 HTTP 请求量的增长率 |
不要将 counter 类型应用于样本数据非单调递增的指标,例如:当前运行的进程数量(应该用 Guage 类型)。
Guage(仪表盘)
Guage 类型代表一种样本数据可以任意变化的指标,即可增可减。guage 通常用于像温度或者内存使用率这种指标数据,也可以表示能随时增加或减少的 "总数",例如:当前并发请求的数量。
对于 Guage 类型的监控指标,通过 PromQL 内置函数 delta() 可以获取样本在一段时间内的变化情况,例如,计算 CPU 温度在两小时内的差异:
1 | delta(cpu_temp_celsius{host="zeus"}[2h]) |
你还可以通过 PromQL 内置函数 predict_linear() 基于简单线性回归的方式,对样本数据的变化趋势做出预测。例如,基于 2 小时的样本数据,来预测主机可用磁盘空间在 4 个小时之后的剩余情况:
1 | predict_linear(node_filesystem_free{job="node"}[2h], 4 * 3600) < 0 |
Histogram(直方图)
在大多数情况下人们都倾向于使用某些量化指标的平均值,例如 CPU 的平均使用率、页面的平均响应时间。这种方式的问题很明显,以系统 API 调用的平均响应时间为例:如果大多数 API 请求都维持在 100ms 的响应时间范围内, 而个别请求的响应时间需要 5s,那么就会导致某些 web 页面的响应时间落到中位数的情况,而这种现象被称为长尾问题。
为了区分是平均的慢还是长尾的慢,最简单的方式就是按照请求延迟的范围进行分组。例如,统计延迟在 0~10ms 之间的请求数有多少而 10~20ms 之间的请求数又有多少,通过这种方式可以快速分析系统慢的原因。 Histogram 和 Summary 都是为了能够解决这样问题的存在,通过 Histogram 和 Summary 类型的监控指标,我们可以快速了解监控样本的分布情况。
Histogram 在一段时间范围内对数据进行采样(通常是请求持续时间或响应大小等),并将其计入可配置的存储桶(bucket)中,后续可通过指定区间筛选样本,也可以统计样本总数,最后一般将数据展示为直方图。
Histogram 类型的样本会提供三种指标(假设指标名称为
- 样本的值分布在 bucket 中的数量,命名为 _bucket{le="<上边界>"}。解释得更通俗易懂一点,这个值表示指标值小于等于上边界的所有样本数量。
1 | // 在总共2次请求当中。http 请求响应时间 <=0.005 秒 的请求次数为0 |
- 所有样本值的大小总和,命名为
_sum
1 | // 实际含义:发生的2次 http 请求总的响应时间为 13.107670803000001 秒 |
- 样本总数,命名为
_count。值和 _bucket{le="+inf"} 相同。
1 | // 实际含义:当前一共发生了 2 次 http 请求 |
可以通过 histogram_quantile()
函数来计算 Histogram
类型样本的分位数。分位数可能不太好理解,我举个例子,假设你要计算样本的 9
分位数(quantile=0.9), 即 90% 的样本的值。Histogram
还可以用来计算应用性能指标值(Apdex score)。
Summary(摘要)
与 Histogram 类型类似,用于表示一段时间内的数据采样结果(通常是请求持续时间或响应大小等),但它直接存储了分位数(通过客户端计算,然后展示出来),而不是通过区间来计算。
Summary 类型的样本也会提供三种指标(假设指标名称为):
- 样本值的分位数分布情况,命名为
{quantile="<φ>"}
1 | // 含义:这 12 次 http 请求中有 50% 的请求响应时间是 3.052404983s |
- 所有样本值的大小总和,命名为
_sum
1 | // 含义:这12次 http 请求的总响应时间为 51.029495508s |
- 样本总数,命名为
_count
1 | // 含义:当前一共发生了 12 次 http 请求 |
现在可以总结一下 Histogram 与 Summary 的异同:
它们都包含了
_sum 和 _count 指标。 Histogram 需要通过
_bucket 来计算分位数,而 Summary 则直接存储了分位数的值。